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Non-crystallographic (NC) nets are periodic nets characterized by the existence

of non-trivial bounded automorphisms. Such automorphisms cannot be

associated with any crystallographic symmetry in realizations of the net by

crystal structures. It is shown that bounded automorphisms of finite order form a

normal subgroup F(N) of the automorphism group of NC nets (N, T). As a

consequence, NC nets are unstable nets (they display vertex collisions in any

barycentric representation) and, conversely, stable nets are crystallographic

nets. The labelled quotient graphs of NC nets are characterized by the existence

of an equivoltage partition (a partition of the vertex set that preserves label

vectors over edges between cells). A classification of NC nets is proposed on the

basis of (i) their relationship to the crystallographic net with a homeomorphic

barycentric representation and (ii) the structure of the subgroup F(N).

1. Introduction

Since the precursor works of Wells (1977) and O’Keeffe &

Hyde (1980), the topology of crystal structures has been

represented by periodic nets. Whereas such nets, as combi-

natorial objects, may display a rich variety of automorphism

groups, the emphasis has naturally been put on periodic nets

whose automorphism group is isomorphic to some space

group. These have been called crystallographic nets (Klee,

2004). By contrast, periodic nets that do not satisfy this

restriction have been called non-crystallographic (NC) nets.

Relatively few NC nets are known, to which observation

one may assign two extreme explanations. For some reason it

might happen that crystal structures with the topology of NC

nets are not favoured from a thermodynamic, or maybe a

kinetic, point of view, and are consequently rare in nature. But

it might also be that, in the absence of easily identifiable

features, one fails to recognize them.

The easiest way to deal with periodic nets ðN;TÞ is to work

with their labelled quotient graphs N=T, informally the graph

of their vertex- and edge-lattices (Chung et al., 1984).

However, only automorphisms in the normalizer of the

translation group T – called periodic automorphisms in

Delgado-Friedrichs (2005) – induce an automorphism of N=T.

When present, such automorphisms of N=T are easily

detected, but this is not the rule. In general, one must still rely

on a direct study of periodic nets to analyse their full auto-

morphism group.

Consider, for example, the labelled (voltage) graph, say Q,

shown in Fig. 1(a). By the definition of voltage graphs the

derived 2-periodic net N contains the three vertex-lattices

A ¼ fAi;jg, B ¼ fBi;jg and C ¼ fCi;jg for i; j 2 Z. Edge-lattices

are derived in the same way. For example, edge AB in Q with

label vector (voltage) 10 generates the edge-lattice Ai;jBiþ1;jþ0.

The derived net is shown in Fig. 1(b) where the same colour

has been used for an edge of Q and the respective edge-lattice.

The following analysis of the automorphisms of Q shows that

the normalizer of the translation group T ¼ Z2 is isomorphic

to p2mm leading to the representation of the derived

2-periodic net in this space group in Fig. 1(c). Indeed, a first

generator �1 of the automorphism group of Q reverses the

loop at vertex A and exchanges the two parallel edges BC with

voltage 01 while leaving invariant edges with voltage 10. A

second generator �2 exchanges vertices B and C, as well as

edges AB and AC, exchanges and simultaneously reverses the

two edges BC with voltage 01 while it reverses edge BC with

voltage 10 and fixes the loop at A. It may be seen that �1

reverses direction 01 and fixes direction 10 of the lattice while

�2 reverses direction 10 and fixes direction 01: together

these operations generate the point group 2mm [see

Klee (2004) or Eon (2011) for a step-by-step description

of the method]. Unexpectedly, however, the net is

uninodal and non-crystallographic: the permutation � ¼Q
i;jðAi;2j;Bi;2j;Ci;2jÞðAi;2jþ1;Ci;2jþ1;Bi;2jþ1Þ for i; j 2 Z, which

exchanges the three vertices in every unit cell, but in a

different way according to whether the index j of the unit cell

is odd or even, is indeed non-crystallographic. Because it does

not respect the lattices it cannot induce an automorphism in Q

and it cannot be associated with an isometry in a Euclidean

1 This article forms part of a special issue dedicated to mathematical
crystallography, which will be published as a virtual special issue of the
journal in 2014.
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representation of the net unless the three vertex-lattices are

represented by the same point-lattice: it is then associated with

the null-vector translation since it has order 3. This auto-

morphism is an example of a bounded automorphism in the

sense that the graph-theoretical distance between any vertex

and its image by � is uniformly bounded. Non-translational

bounded automorphisms are characteristic of NC nets (Eon,

2005). Moreover, � generates the group FðNÞ ¼ f1; �; �2g of

bounded automorphisms of finite order. The orbits by � in the

vertex set of N are exactly the subsets fAi;j;Bi;j;Ci;jg that

partition the vertex set of the net into the so-called blocks of

imprimitivity, i.e. a partition which is preserved by any auto-

morphism of the net.

Some typical examples of NC nets were studied in the two

previous papers of the authors. An analysis of NC nets with

freely acting (i.e. with no fixed vertices) bounded auto-

morphism groups was reported in Moriera de Oliveira Jr &

Eon (2011). The net drawn in Fig. 1 is perhaps the simplest net

in this class and was thoroughly analysed in that paper. More

recently, Moriera de Oliveira Jr & Eon (2013) put the

emphasis on NC nets ðN;TÞ admitting a system of finite blocks

of imprimitivity for the group BðNÞ of bounded automorph-

isms. Nets in both classes share some remarkable properties.

In both cases, NC nets are unstable, that is, any barycentric

representation displays vertex collisions. Moreover, provided

origins in vertex-lattices are suitably chosen, it is possible to

evidence an equivoltage partition (a partition of the vertex set

into disjoint cells – or parts – such that voltages over edges

between two cells are preserved) in the labelled quotient

graph of these nets. For example, the quotient graph Q in

Fig. 1(a) admits an equivoltage partition with a single cell:

every vertex in this graph is the origin and the end of edges

with voltages 10 and 01.

Bounded automorphisms of finite order also appear to play

a central role in both classes of NC nets, as they were observed

to form a non-trivial subgroup FðNÞ<BðNÞ. In this article, we

show that the latter property is quite general and characterizes

the whole class of NC nets. In other words, in any NC net

ðN;TÞ, the set of bounded automorphisms of finite order is

stable under composition and constitutes a normal subgroup

of BðNÞ, and indeed of the full group Aut(N) of automorph-

isms of the net. This result ensures the existence of a system of

finite blocks of imprimitivity for BðNÞ and, consequently, the

existence of an equivoltage partition of the labelled quotient

graph N=T. Hence, equivoltage partitions in labelled quotient

graphs appear to be the fingerprint of NC nets.

It has already been stated in Delgado-Friedrichs (2005) that

NC nets are unstable nets. One should consider, however, that

only periodic automorphisms were taken into account in that

work. In other words, those automorphisms of the net that do

not respect its vertex-lattices were excluded a priori from the

definition of the automorphism group of a periodic net,

denoted as AutðN;TÞ. Here, we consider the full group of

automorphisms AutðNÞ of the net. We emphasize that, as

shown in our previous example, the group of periodic auto-

morphisms AutðN;TÞ of a periodic net ðN;TÞ may be

isomorphic to some space group while the full group of

automorphisms AutðNÞ is not. In this sense, our results using

the wider definition of automorphisms for periodic nets

extend the conclusions reached in the above-mentioned work:

NC nets are unstable nets and conversely, but maybe most

importantly, stable nets are crystallographic nets. Moreover,

labelled quotient graphs remain the best tool to perform the

analysis. Using the narrower definition, periodic automorph-

isms of the net are associated with those automorphisms of the

labelled quotient graph that are consistent with the voltages

over its cycles. Using the wider definition of automorphisms,

the quotient graph of NC nets should display an equivoltage

partition; given a labelled quotient graph, the concept of

equivoltage partition is patently a generalization of that of

automorphism.

Our analysis makes wide use of geodesic fibres, defined as

minimal 1-periodic subgraphs of the net and introduced in

Eon (2007). Geodesic fibres in the 2-periodic net shown

in Fig. 1(b) are infinite paths such as . . . ;Ai;j;Biþ1;j,

Ciþ2;j;Aiþ3;j; . . .. We show that geodesic fibres of a p-periodic

network along a given direction may be built into a ðp� 1Þ-

periodic network. The term network is used here as a

weakened substitute for net, when the 3-connectedness

condition is released to simple connectedness. The descent

in network periodicity is the basis for an inductive proof

of the cornerstone result concerning the stability of the

set of bounded automorphisms of finite order under compo-

sition.

The paper is organized as follows. Basic concepts on peri-

odic nets (and networks) and their geodesic fibres are

summarized in xx2 and 3. As a useful application, it is shown in

x4 that lattice nets are crystallographic nets. Fibre networks

are constructed and their properties analysed in x5. The

stability of the set of bounded automorphisms of finite order

under composition is presented in the next two sections. An

analysis of 1-periodic networks in x6 is the first step of an

argument by induction on the periodicity of networks, which is

given in x7. The fundamental results characterizing NC nets
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Figure 1
(a) A labelled graph, (b) a representation of the derived 2-periodic net
(the triple-sql) with crossings and (c) a representation of this net in space
group p2mm with points in Wyckoff positions a (site symmetry 2mm:
point-lattice A) and e (site symmetry ::m: point-lattices B and C): line-
lattices have the same hue in the net and its quotient. Different line-
lattices also have different width in (c) to help in distinguishing
superimposed lines along direction 10; light-blue lines Bi;jCiþ1;j and
Biþ1;jCiþ2;j, from the same line-lattice BC are also superimposed: the
common segments Biþ1;jCiþ1;j have been shaded.



and leading to a classification scheme are derived in x8. Two

simple examples are described in xx9 and 10.

2. Preliminary concepts

A net has been defined by Klee (2004) as a simple, locally

finite, 3-connected graph. By definition, simple graphs have

no loops and no multiple edges; vertices in locally finite

graphs have a finite number of neighbours. These two condi-

tions are clearly necessary if the graph is to represent the

bonds in a chemical compound. The connectivity required

here is the point-connectivity and corresponds to the smallest

number of vertices that should be withdrawn to disconnect

the graph. Note that deleting a vertex also requires deleting

all incident edges. Because the 3-connectivity condition

is not always satisfied (nor required) in this work, we define

in parallel a network as a simple, locally finite, connected

graph. For example, the ladder in Fig. 2(a) is 2-connected,

the double ladder in Fig. 2(b) is 3-connected and the square

lattice net sql in Fig. 2(c) is 4-connected: the ladder is then a

network while the double ladder and sql are nets. Observe that

the ladder is 2-connected even though all its vertices have

degree 3.

Two vertices linked by an edge are said to be adjacent.

Automorphisms of a net are vertex permutations that preserve

the adjacency relationship; the automorphism group of a net N

is denoted by Aut(N).

A p-periodic net (or network) ðN;TÞ is constituted of a net

(or network) N and a free abelian group T � AutðNÞ of rank

p, such that the number of vertex and edge orbits by T (called

vertex-lattices and edge-lattices, respectively) in N is finite.

Periodic nets ðN;TÞ such that the automorphism group

AutðNÞ is not isomorphic to any isometry group in the

Euclidean space are called non-crystallographic nets and are

characterized by the presence of non-translational bounded

automorphisms, i.e. automorphisms ’ =2T such that the

distance between a vertex and its image is uniformly bounded

(Eon, 2005).

A system � of finite blocks of imprimitivity for the group of

bounded automorphisms BðNÞ is a partition � into finite cells

(called blocks) of the vertex set of the periodic net ðN;TÞ

which is preserved by bounded automorphisms. That is, if

� 2 � and ’ 2 BðNÞ, then ’ð�Þ 2 �.

The quotient graph of the periodic net (or network) ðN;TÞ

is the graph N=T of its vertex- and edge-lattices. A labelled

quotient graph is obtained after assigning lattice vectors to the

edges of the quotient graph. This requires setting an origin for

each vertex-lattice in the net and choosing an orientation for

the edges of the quotient graph; the label vector (voltage)

assigned to some edge e ¼ AB in N=T is the p-tuple t of the

edge A0Bt from the corresponding edge-lattice in N.

A partition of a graph into cells Ci is equitable if the number

of edges with end-vertex in the cell Cj starting from a given

vertex V in cell Ci is a number bij, independent of the chosen

vertex in Ci. We say that a partition of a labelled quotient

graph is equivoltage if it is equitable and if the multiset (i.e. the

set including multiplicity) of bij voltages over the edges going

from some vertex V in Ci to vertices in Cj is also independent

of V (see Moreira de Oliveira Jr & Eon, 2013). Illustrations of

these concepts are provided in Fig. 3. It should be observed

that equivoltage partitions may exist even in the absence of

automorphisms preserving voltages.

Barycentric representations of periodic nets play an

important role in the study of NC nets. A Euclidean repre-

sentation of the net is a mapping � of the vertex and edge sets

to points and line segments, respectively, in Euclidean space

such that �ðeÞ ¼ �ðAÞ�ðBÞ for the edge e ¼ AB. A repre-

sentation is periodic if any vertex-lattice and edge-lattice are

mapped on a point-lattice and a line-lattice, respectively. In

barycentric representations, the image of every vertex is at the

centre of gravity of the images of its first neighbours. Because

periodic, barycentric representations of NC nets display vertex

collisions their determination must follow the cycle–cocycle

method described in Eon (2011). We recall below a property

of bounded automorphisms with fixed vertices that was

derived in Moreira de Oliveira Jr & Eon (2013).

Corollary 2.1. Suppose there is a non-trivial automorphism f

of a periodic net ðN;TÞ that fixes every vertex in some vertex-

lattice ½X�. Then any periodic, barycentric representation of
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Figure 2
(a) The ladder, (b) the double ladder and (c) the square lattice net sql.

Figure 3
(a) A graph with no non-trivial equitable partition, (b) a graph with an
equitable partition (every red vertex makes three links to green vertices
and every green vertex makes three links to red vertices), (c) a voltage
graph with no non-trivial equivoltage partition and (d) a voltage graph
with an equivoltage partition (red vertices show the same voltage
multisets, {10, 01, 00} for edges linking them to the green ones and
{10; 01; 00} for the edges from green to red vertices).



the net in Euclidean space presents vertex collisions. In

particular, every vertex in ðN;TÞ is mapped on the same point

as its image by f.

3. Geodesic fibres

This section summarizes the main definitions and results

concerning geodesic fibres in periodic nets (see Eon, 2007).

Given a subgroup S<T of rank 1, we denote by ExtðSÞ the

maximal extension (i.e. the largest supergroup) of S of rank 1

such that S � ExtðSÞ � T. For instance, if S ¼ hð4; 8Þi is the

subgroup generated in Z
2 by the translation ð4; 8Þ, then

ExtðSÞ ¼ hð1; 2Þi is the subgroup generated by the translation

ð1; 2Þ. Of course, the index of S in ExtðSÞ is finite.

We recall that a subgraph F of a graph G is said to be

geodesically complete in G if, for any pair of vertices U;V 2 G,

F contains all geodesic (shortest) paths UV in G.

Definition 3.1. A periodic subgraph (F; S) of a periodic

graph (G;T) is called a geodesic T-fibre or simply a fibre if (a)

the translation group S is a subgroup of T of rank 1, (b) the

subgraph F is geodesically complete in G and (c) F is minimal

with respect to the conditions of periodicity (a) and comple-

teness (b). We say that the fibre (F; S) is along S. Two T-fibres

(F1; S1) and (F2; S2) such that ExtðS1Þ ¼ ExtðS2Þ are said to be

parallel.

Fig. 4 illustrates the restrictions imposed by the above

definition. Here we consider the honeycomb net hcb and some

1-periodic subgraphs (networks) that have been highlighted in

red for clarity. Fig. 4(a) shows a 1-periodic subgraph with

translation group generated by the translation 22 of hcb, which

is topologically equivalent (homeomorphic) to the ladder in

Fig. 2(a). This network is geodesically incomplete since the

missing rungs are shortcuts in hcb to paths in the network

between the respective end-vertices. Adding these edges, as in

Fig. 4(b), one gets a 1-periodic subgraph that is geodesically

complete: every shortest path in hcb between any pair of

vertices in this network belongs to it but it is not minimal. It

contains as a subgraph a 1-periodic network isomorphic to the

infinite path shown in Fig. 4(c). The latter is geodesically

complete and minimal, since withdrawing any edge turns it

geodesically incomplete.

Examples of fibres in 2-periodic nets are given in Fig. 5. The

net 4:82 shown in Fig. 5(a) has fibres that are infinite paths

along 11 (green) and non-trivial fibres along 10 (red). Similarly

the net 4:3:4:32 in Fig. 5(b) admits fibres that are infinite paths

along 01 (green) and non-trivial fibres along 11 (red). Exam-

ples of fibres in 3-periodic nets will be described in x5.

The main properties of geodesic fibres and those related to

bounded automorphisms were disclosed in Eon (2007); they

are enumerated below:

(i) Any p-periodic net ðN;TÞ admits geodesic fibres along at

least p independent directions.

(ii) The quotient graph of a fibre F=S is a subgraph of the

quotient graph N=T of the net.

(iii) In any periodic net, bounded automorphisms map

geodesic fibres to parallel geodesic fibres.

(iv) Bounded automorphisms with fixed vertices have finite

order.

Property (ii) permitted us to draw the labelled quotient

graphs of the geodesic fibres displayed in Fig. 5 as labelled

subgraphs of the quotient graph of the respective nets, i.e. the

labelled quotient graph of the fibre is obtained from that of

the net by deleting some of the edges. Property (iii) makes

fibres the fundamental tool for studying bounded auto-

morphisms in NC nets.

4. Lattice nets

Periodic nets with a single vertex-lattice have been called

lattice nets (Delgado-Friedrichs & O’Keeffe, 2009). Their

quotient graph contains a single vertex and several loops, at

least as many as the periodicity p of the net. Of course no two

loops can have the same voltage but no other restriction is
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Figure 4
The honeycomb net hcb and three 1-periodic subgraphs (in red) that are
(a) geodesically incomplete, (b) geodesically complete but not minimal
and (c) a fibre along direction 11, together with the labelled quotient
graphs of (d) hcb and (e) the fibre along 11.

Figure 5
Some geodesic fibres in the 2-periodic nets (a) 4:82 and (b) 4:3:4:32 and
their labelled quotient graphs; the same colour is used for the fibre and its
quotient, represented as a labelled subgraph of the labelled quotient
graph of the net.



imposed. Two examples of 2-periodic lattice nets are

presented in Fig. 6. We derive here a fundamental property of

these nets.

Theorem 4.1. Lattice nets are crystallographic nets.

Proof. Let ðN;TÞ be a p-periodic lattice net. Because of the

restriction on voltages in N=T the quotient graph of any

geodesic fibre of N must be a loop. From property (i) we know

that there are at least p loops with independent voltages

corresponding to geodesic fibres. Let S � T be the subgroup

generated by this set of voltages: the index of S in T is clearly

finite. Suppose now that there exists a non-trivial bounded

automorphism b =2T mapping vertex U to tðUÞ. Then f ¼ t�1b

is a non-trivial bounded automorphism with U as a fixed

vertex. By property (iii) all geodesic fibres traversing U are

also fixed, hence the whole sublattice SðUÞ is fixed by f.

According to Corollary 2.1 any periodic barycentric repre-

sentation of ðN;TÞ, which is also a fortiori a periodic bary-

centric representation of ðN; SÞ – with fixed vertex-lattice

½U�S ¼ SðUÞ – should display collisions. But this cannot occur

since N contains a single vertex-lattice TðUÞ, hence b ¼ t. &

5. Fibre networks

Different methods may be used to construct a ðp� 1Þ-periodic

net from a set of geodesic fibres in a p-periodic net, depending

on the initial choice of the vertex set. The following definition

seems to be more adequate for our purposes. For a p-periodic

net ðN;TÞ, we consider its fibres along some direction hti 2 T.

Definition 5.1. The vertex set of a fibre network consists of

the family of all geodesic fibres along hti that are equivalent

under the bounded automorphism group BðNÞ.

Let then Vt be the vertex set of a fibre network according to

Definition 5.1. We may define the distance dðF1;F2Þ in the net

N between two geodesic fibres F1 and F2 belonging to Vt as the

length of a shortest path joining the two fibres. Given any

positive integer n, we define the graph Fn on Vt such that two

fibres F1 and F2 in Vt are adjacent in Fn whenever

dðF1;F2Þ � n. The fibre network is defined as the graph

F ¼ Fc such that c is the smallest value of n yielding a

connected graph. Note that the periodicity of the net N

ensures the existence of c.

A few simple examples will illustrate the concept. Fig. 7

shows the nbo net and its labelled quotient graph K
ð2Þ
3 . Note

that we use the RCSR three-letter symbols to designate net

topologies (O’Keeffe et al., 2008). Geodesic fibres along

direction 100 are infinite paths, indicated in green and red for

clarity, although they are all equivalent by translation. In

agreement with property (ii), the quotient graph F=S of these

fibres is the 2-cycle of net voltage 100, marked in orange in

K
ð2Þ
3 . It can be seen in the figure that the minimum distance

between two fibres is 2 and that each fibre has eight neigh-

bours at this distance, leading to the 2-periodic fibre net shown

as a projection of nbo. Because there is only one fibre up to

translation, the fibre net is a lattice net and being regular of

degree 8 it admits the bouquet B4 as its quotient graph. Since

edges of the fibre net correspond to 2-paths in nbo between

two fibres, we get the voltages over the loops of B4 as the

projection in T=S of the net voltages over 2-paths (or 2-cycles)

in K
ð2Þ
3 linking vertices in F=S and running along edges that do

not belong to this quotient, marked in black in Fig. 7. For

instance, the 2-cycle B–C–B with net voltage 001 + 111 = 112

originates the loop with voltage 12 and the 2-path B–C–A with

net voltage 001 + 000 = 001 originates the loop with voltage 01.

In this case, the following intuitive two-step procedure may

also be used to get the labelled quotient graph of the fibre
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Figure 6
Two lattice nets and their labelled quotient graphs: (a) the net hxl with (b)
quotient graph B3 and (c) a net with (d) quotient graph B4.

Figure 7
A representation of the nbo net (quotient graph: K

ð2Þ
3 on the top right)

with geodesic fibres along direction 100 drawn along the vertical of the
page; the coloured (green and red) fibres of the 3-periodic nbo net form
the vertex set of a regular 2-periodic net of degree 8 shown as a projection
(quotient graph: B4 on the bottom right). The three labelled vertices A, B
and C mark the origin in the net of the respective vertex-lattices.



network from that of nbo. First, the subgraph F=S is

condensed into a single (orange) vertex, yielding the new

graph K
ð4Þ
2 , and voltages are substituted by their projection in

the quotient group T=S: here we just drop the first coordinate

from the triplet label vector of every edge. Note that, in

parallel, vertex C must be re-written as ½C� and represents a

whole class of vertices that are equivalent by the translation

100. In the last step only the fibre vertex is kept and loops are

inserted, one for each 2-cycle of K
ð4Þ
2 since each 2-cycle is

derived from a 2-path in K
ð2Þ
3 . The voltage over the loop is

equal to the net voltage over the respective 2-cycle with the

condition that no two loops can have the same, or opposite

voltages.

Fig. 8 shows the pts net, with quotient graph C
ð2Þ
4 shown on

the left in Fig. 9. In contrast with nbo, geodesic fibres are not

degenerated to infinite paths. For clarity, Fig. 10 displays a

single fibre of pts along direction 100 and its labelled quotient

graph, also marked in orange as a subgraph of C
ð2Þ
4 in Fig. 9. As

in nbo, every fibre is also at distance 2 from eight equivalent

fibres, and both fibre nets of nbo and pts along direction 100

are isomorphic. Notice that the isomorphism is already

apparent after the first reduction step of the respective

labelled quotient graphs. Indeed, the same graph K
ð4Þ
2 is

obtained in both cases and voltages become equal if the new

lattice basis ð11; 10Þ is used for pts.

We consider finally the NC net associated with sphere

packing 4=4=o19 (Sowa, 2012; Moreira de Oliveira Jr & Eon,

2013) drawn in Fig. 11 as a pseudo-barycentric representation

(colliding vertices have been circled by pairs). Here geodesic

fibres along 001 are infinite paths and there are two transla-

tionally non-equivalent fibres with labelled quotient graph

marked in orange in Fig. 12. Each fibre is at distance 2 from

the colliding fibre and at distance 3 from eight fibres divided

into four colliding pairs. Hence F2 is not connected; the fibre
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Figure 9
Reduction steps from (left) the labelled quotient graph of the pts net
(C
ð2Þ
4 ) with the labelled quotient graph of the geodesic fibre along 100

marked in orange to (right) the labelled quotient graph of the respective
fibre network (B4).

Figure 10
A geodesic fibre of the pts net along 100 and its labelled quotient graph.

Figure 8
A representation of the pts net with fibres along direction 100 drawn
along the vertical of the page; the coloured (green and red) fibres of the
3-periodic net form the vertex set of a regular 2-periodic net of degree 8
shown as a projection. For the sake of clarity, fibres are represented as
vertex-sharing chains of coloured squares with darker hues for fibres at
the front. Fibres along 010, shaded in grey, form a similar pattern cross-
linking fibres along 100.

Figure 11
A representation of the underlying net to sphere packing 4=4=o19 with
geodesic fibres along direction 001 – drawn along the vertical of the page;
the coloured (green and red) fibres of the 3-periodic net form the vertex
set of a regular 2-periodic net of degree 9 shown as a projection.



network is F ¼ F3 shown as a projection in Fig. 11 and is

regular of degree 9.

We now return to general properties of fibre networks. By

construction F is periodic with periodicity ðp� 1Þ but it is not

necessarily a periodic net since 3-connectivity may not hold.

Let ’ 2 BðNÞ be a bounded automorphism of N. For any pair

of geodesic fibres F1 and F2 along hti, we know that their

images ’ðF1Þ and ’ðF2Þ are geodesic fibres along the same

direction hti and moreover dð’ðF1Þ; ’ðF2ÞÞ ¼ dðF1;F2Þ. Hence

’ induces an automorphism, say ’�, in F. It is clear that ’� is

also a bounded automorphism and that the mapping ’ 7!’� is

a group homomorphism between Aut(N) and Aut(F). Hence,

if ’ is of finite order then ’� is also of finite order. But the

converse is not true since any translation along t in N is

mapped to t� ¼ 1, the identity in AutðFÞ. We will now apply

the concept of fibre network to prove the stability of the

subset of automorphisms of finite order in BðNÞ under

composition. The argument is by induction on the periodicity

p of the net. The initial step (1-periodic nets) is proven in the

next section. The inductive step is proven in x7.

6. Bounded automorphisms of finite order in 1-periodic
networks

An automorphism in a periodic network, considered as a

vertex permutation, may be written in cycle form. For auto-

morphisms of finite order n, the cycle decomposition only

contains cycles of length at most n. In contrast, bounded

automorphisms of infinite order only contain infinite cycles.

Suppose, by way of contradiction, that there is one finite cycle

of length m in the decomposition of an automorphism ’ of

infinite order. Then ’m, another bounded automorphism, has

fixed vertices; according to property (iv) of geodesic fibres ’m

has finite order, in contradiction with the hypothesis.

Lemma 6.1. A bounded automorphism of infinite order in a

1-periodic network ðN;TÞ decomposes into finitely many

infinite cycles.

Proof. We suppose that the unit cell of the network has

been lifted from a spanning tree of the quotient graph N=T.

Let then ’ be a bounded automorphism of infinite order with

norm j’j and let n be the maximum number of cells separating

two vertices at distance j’j in N. For the sake of simplicity, we

will define a supercell associated with the translation subgroup

Tn and index the new cells �i for i 2 Z according to the

respective translation tni 2 T ¼ hti such that �i ¼ tnið�0Þ for

some origin cell �0. According to these choices, given two

vertices A and B in �i and �j, respectively, dðA;BÞ> j’j
whenever jj� ij> 1. Call z the order of the supercell (i.e., the

number of vertices in the supercell): the vertices in �0 give rise

to at most z infinite cycles in the cycle decomposition of ’.

Suppose now that not all vertices in supercells �i for i> 0

belong to these cycles and take one of them, say V 2 �l , at the

shortest distance from �0. (The following argument may easily

be adapted for i< 0.) Then, all the images ’mðVÞ and ’�mðVÞ

for m> 0 belong to supercells �i for i � l. More specifically,

for any supercell �k (k> l) there is a value of r> 0 such that

’mðVÞ 2 �i with i> k for all m � r (see Fig. 13). The same

property holds clearly for ’�1. Let us call D the diameter of

the supercell (maximum distance between two vertices in the

supercell). According to the definition of the supercell, there is

an image ’�sðVÞ (s> 0) in the same supercell containing

’rðVÞ, hence at a distance less than D from this vertex. Thus

dð’rþsðVÞ;VÞ ¼ dð’rðVÞ; ’�sðVÞÞ<D, a contradiction since k

can be chosen large enough to impose dð�k;�lÞ>D. &

Remark 6.1. It is worth observing that the argument

developed in the above proof has wider significance. Indeed it

implies that the images ’rðVÞ (r 2 Z) of any vertex V by a

bounded automorphism ’ of infinite order are distributed over

the whole network in the sense that every supercell contains at

least one image ’rðVÞ for some r. In the first place the proof

showed that it is not possible to find an integer k such that

’rðVÞ belongs to the supercell �iðrÞ with iðrÞ> k for all r nor,

equivalently, is it possible to find an integer l such that ’rðVÞ

belongs to the supercell �iðrÞ with iðrÞ< l for all r. Hence,

for any integer i there are images ’mðVÞ and ’nðVÞ such

that ’mðVÞ 2 �iðmÞ and ’nðVÞ 2 �iðnÞ with iðmÞ< i< iðnÞ. The

definition of the supercell implies then that �i contains at least

one image ’rðVÞ for r in the range between m and n.

We analyse now some properties of permutations in infinite

sets. Because any finite cycle may be written as a product of

transpositions, we first analyse the product ðU;VÞp of one or

two cyclic permutations p by a transposition ðU;VÞ. Our

convention is that permutations apply from the right to the

left. This product is schematically shown in Fig. 14 where each

cyclic permutation is drawn as a directed cycle and the single

transposition ðU;VÞ has been represented as a 2-cycle (a

double edge): all these cycles have counterclockwise orienta-

tion.

Two different situations may arise but in every case ingoing

edges are exchanged at U and V as a result of the composition.
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Figure 13
Backward and forward images ’�sðVÞ and ’rðVÞ in the same supercell of a
1-periodic network.

Figure 12
Reduction steps from (left) the labelled quotient graph of the underlying
net to sphere packing 4=4=o19 indicating in orange the labelled quotient
graphs of the two colliding geodesic fibres along direction 001 to (right)
the labelled quotient graph of the respective fibre network.



If both vertices U and V belong to the support of the same

cycle, it is easily seen in Fig. 14 that the cyclic permutation (in

black) followed by the transposition (in red) decomposes into

two cyclic permutations (in green). If the initial cycle is infi-

nite, the product decomposes into a finite cycle and an infinite

one. The support of the finite permutation contains all the

vertices between U and V, including the first vertex U and

excluding the last vertex V. The whole operation may then be

understood as an excision of the interval ½U;V½ from the

support of the initial cycle with subsequent closure of both

cycles.

If, on the other hand, U and V belong to the support of two

disjoint cyclic permutations, at least one of them of finite

support, the converse clearly occurs. That is, both cycles open

at U and V and the finite cycle is inserted into the infinite one.

If, however, both cycles are infinite then the product still

contains two infinite cycles which have exchanged the semi-

infinite parts starting at vertices U and V. We have thus proved

the following.

Lemma 6.2. The composition of a finite product of infinite

cycles by a transposition may create a finite cycle by excision

but it does not change the number of infinite cycles.

For the proof of the next result, we will need a kind of

pointwise convergence for permutations in infinite sets. We

will say that a sequence pi, i 2 N of permutations admits the

limit p if, for every element U, one can find an integer n such

that piðUÞ ¼ pðUÞ whenever i> n.

Lemma 6.3. In a 1-periodic network N, the product of two

bounded automorphisms of finite and infinite order, respec-

tively, cannot be an automorphism of finite order. As a

consequence, the set of bounded automorphisms of finite

order is stable under composition.

Before exposing the proof, it might be useful to offer an

informal overview of the main lines of its reasoning. We

consider the composition f’ of two bounded automorphisms:

’ of infinite order and f of finite order, both written in their

cycle form. Observe that Lemma 6.2 already ensures the result

when f has finite support; the difficulty arises when f has

infinite support. The strategy of the proof is to build the

product f’ as the limit of a sequence pm’ where pm is a

permutation of finite support, which has the same action as f

on a finite ball centred at the origin. This is possible because f

is a product of finite disjoint cycles Cm which may be applied in

any order; they may then be applied by order of proximity to

the origin. The argument is based upon the observation that,

as the ball is growing at step m and its radius is already larger

than the norm jf j þ j’j, the action of the next cycle Cm is

restricted to vertices localized at one of the boundaries of the

ball. Notice that convergence is already attained for vertices

inside the ball. After composition of pm�1 with Cm, infinite

cycles in pm still cross the ball at intervals less than jf j þ j’j.
This property remains up to the limit p. Elimination of the

infinite cycles on convergence could only occur if finite cycles

Cm acted on both boundaries of the ball, forcing infinite cycles

to pull over the ball. An explicit example of the mechanism of

convergence to bounded or unbounded permutations in a

similar situation is discussed in Appendix A.

Proof. As a bounded automorphism of infinite order,

’ ¼
Q

k �k contains finitely many infinite disjoint cycles �k.

Being of finite order, f ¼
Q

i2N Ci contains countably many

finite disjoint cycles Ci, which can be decomposed into a finite

product of transpositions. Let us define the vertex permuta-

tions pm ¼
Q

i�m Ci’, or recursively pmþ1 ¼ Cmþ1pm with

p0 ¼ C0’; clearly the sequence pm converges to the product f’
since the cycles Ci are disjoint. Because the product of disjoint

cycles commutes, we may choose the sequence Ci so that the

support of the permutation Sm ¼
Q

i�m Ci covers a ball of

radius increasing with m around the origin cell �0 of the

network. By repeated application of Lemma 6.2, we see that

left multiplication of ’ by
Q

i�m Ci does not change the

number of infinite cycles. Notice that every permutation pm is

bounded (jpmj � jf j þ j’j) but needs not be an auto-

morphism, only the limit p ¼ f’ needs to be one. However,

the conclusion reached in Remark 6.1 also holds for these

infinite cycles because, far from the ball, on both sides, these

cycles are identical to those in ’. Hence, the origin cell �0

contains at least one vertex in the support of infinite cycles in

the decomposition of pm at every step m. Clearly, if the limit p

were of finite order, every vertex in �0 would belong to a finite

cycle for sufficiently large values of m. This shows that the

product f’ cannot be of finite order, or equivalently that it is

not possible to find two bounded automorphisms f and g of

finite order such that the product f�1g ¼ ’ has infinite order.
&

7. Bounded automorphisms of finite order in p-periodic
networks

We still need a preparatory result before generalizing

Lemma 6.3 to networks of an arbitrary periodicity.

Lemma 7.1. If the orbit by some bounded automorphism ’
of every geodesic fibre in a p-periodic net N is finite, then ’ has

finite order.

Proof. Call D the diameter of the quotient graph N=T. An

arbitrary vertex V in N is at a distance less than D from any
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Figure 14
Schematic representation of the product of (black line) one cyclic
permutation or (green line) two cyclic permutations by a transposition
(red line); all cycles have counterclockwise orientation. Dashed lines
indicate that the corresponding cycle may be finite or infinite.



fibre in a set of p geodesic fibres along independent directions

acting as a set of axes (but not necessarily intersecting) for a

frame of reference. Since the orbits of these p fibres are finite,

the orbit of V is also finite, showing that some power of ’ fixes

V. Hence, according to property (iv), ’ has finite order. &

Theorem 7.1. The set FðNÞ of bounded automorphisms of

finite order in a p-periodic network ðN;TÞ is stable under

composition.

Proof. The proof is by induction on the periodicity of the

network. Lemma 6.3 shows that the result is true for 1-periodic

networks. Suppose that it is true for periodicity up to p.

Let then ðN;TÞ be a ðpþ 1Þ-periodic network and suppose

that ’1; ’2 2 FðNÞ are such that ’1’2 =2FðNÞ. According to

Lemma 7.1, one can find at least one geodesic fibre F in N

whose orbit by the product ’1’2 is infinite. Consider then the

corresponding p-periodic fibre network F and the images of

these automorphisms by the mapping �: Aut(N) ! Aut(F).

We see that ’�1; ’
�
2 2 FðFÞ, because the mapping � is a group

homomorphism but ’�1’
�
2 ¼ ð’1’2Þ

� =2FðFÞ, in contradiction

with the induction hypothesis. &

8. Fundamental theorems for non-crystallographic nets

Let us analyse successively the different kinds of NC nets; it

will be seen that every NC net possesses non-trivial bounded

automorphisms of finite order.

8.1. NC nets with fixed vertices

We consider first non-crystallographic nets admitting

bounded automorphisms with fixed vertices. According to

property (iv), such automorphisms have finite order. Let us

call FðNÞ � BðNÞ the set of bounded automorphisms of N

with finite order. Theorem 7.1 shows that FðNÞ is stable under

composition; it is then easily verified that FðNÞ is a normal

subgroup of AutðNÞ.

Theorem 8.1. The orbits by FðNÞ of the vertex set define a

periodic system of imprimitivity with finite blocks for the

group of bounded automorphisms.

Proof. We know from Bhattacharjee et al. (1998) that the

orbits of a normal subgroup form a system of imprimitivity.

Suppose that a block � contains two translationally equivalent

vertices U and tðUÞ. Then there is some f 2 FðNÞ such

that f ðUÞ ¼ tðUÞ, or f�1tðUÞ ¼ U, so that f�1t ¼ g 2 FðNÞ

(because it has a fixed vertex) and hence t ¼ fg 2 FðNÞ

[because of the stability of FðNÞ], which is clearly a contra-

diction. Therefore, blocks may contain at most one vertex per

vertex-lattice and are finite. Let now � be the orbit of U under

FðNÞ; since FðNÞ is a normal subgroup, we have tFðNÞt�1 ¼

FðNÞ, from which we see that tð�Þ is the orbit of tðUÞ. &

Let � be the respective partition of the vertex set into

blocks of imprimitivity for BðNÞ. It is clear that the setwise

stabilizer BðNÞ� of � is a subgroup of FðNÞ, since blocks are

finite. By definition FðNÞ � BðNÞ� , hence BðNÞ� ¼ FðNÞ is

transitive on every block. According to Moreira de Oliveira Jr

& Eon (2013) it is possible to assign voltages to the labelled

quotient graph of the net in such a way that it displays an

equivoltage partition. Moreover, any barycentric representa-

tion of the net will show vertex collisions.

8.2. NC nets with fixed edges

Suppose now that some NC net admits non-trivial bounded

automorphisms that fix edges but no non-trivial bounded

automorphism fixing vertices. This implies that the respective

automorphism, say ’, exchanges the two end-vertices of the

fixed edge and that ’2 ¼ 1 is the identity of AutðNÞ. The

ladder in Fig. 2(a) provides an example of such automorph-

isms. We may deal with these nets by inserting a vertex into

every fixed edge. The new net possesses bounded auto-

morphisms of order 2 fixing the added vertices but with no

fixed edges. Hence there is a periodic system of imprimitivity

for BðNÞ with finite blocks such that (i) the two vertices linked

to the added one belong to the same block and (ii) the added

vertex belongs to another block. If we delete the inserted

vertex and link again the two end-vertices, we get a non-trivial

periodic system of imprimitivity with finite blocks for the

initial net where the two end-vertices of the fixed edge still
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Figure 15
Derivation of a 2-periodic NC net from the bouquet B2 with voltages
ðð1; 2Þ; 01Þ and ðð1; 2; 3Þ; 10Þ with permutations ð1; 2Þ and ð1; 2; 3Þ in S3

and translations 01 and 10 in Z2. For the sake of clarity, permutations
ði; j; kÞ are noted ijk. Vertices of the net may be labelled as ðp; tÞ in the
direct product S3 	 Z

2. According to the definition (Gross & Tucker,
2001) the voltage graph implies that vertex ðp; tÞ is linked to vertices
ðpð1; 2Þ; t þ 01Þ and ðpð1; 2; 3Þ; t þ 10Þ. The resulting net is isomorphic to
that shown in Fig. 1(b).



belong to the same block. This shows that the conclusions of

the previous subsection concerning the existence of an equi-

voltage partition of the labelled quotient graph and that of

collisions in any barycentric representation of the net also

hold in this case.

8.3. NC nets with freely acting bounded automorphisms

It was shown in Moreira de Oliveira Jr & Eon (2011) that

any NC net N with freely acting, non-abelian, bounded

automorphism group BðNÞ may be derived from a finite graph

by assigning voltages ðhi; tiÞ in the direct productH	 Zn to its

edges, where H is some finite non-abelian permutation group.

A simple example is displayed in Fig. 15.

The group of bounded automorphisms BðNÞ of such nets is

isomorphic to the subdirect product ofH and Zn generated by

the voltages ðhi; tiÞ. Suppose now that the two permutations

hi and hj do not commute in H; the commutator

½ðhi; tiÞ; ðhj; tjÞ� ¼ ð½hi; hj�; 0Þ corresponds to a non-trivial

bounded automorphism of finite order. Hence the subgroup

FðNÞ<BðNÞ is not trivial, which shows that such nets

also possess a periodic system of imprimitivity with finite

blocks.

Suppose finally that an abelian group of bounded auto-

morphisms BðNÞ acts freely on the net. Then we can take the

(finite) quotient N=BðNÞ and assign voltages to the respective

edges in BðNÞ, which shows that BðNÞ is finitely generated.

According to the fundamental theorem about finitely gener-

ated abelian groups, BðNÞ is a direct product of cyclic groups

(Kargapolov & Merzljakov, 1979). The case BðNÞ free abelian

corresponds to a crystallographic net. If BðNÞ is abelian but

not free, then there is some automorphism of finite order and

we may again conclude as above. We have thus shown the

following fundamental result.

Theorem 8.2. Any non-crystallographic net admits a

labelled quotient graph with an equivoltage partition. Any

periodic barycentric representation of the net shows vertex

collisions; vertices that are equivalent under bounded auto-

morphisms of finite order project on the same Euclidean

point.

The converse of the last affirmation is not true and this may

lead to a classification scheme on NC nets. Given an NC net

with system of imprimitivity �, it may happen that the periodic

net N=� ¼ N1 is also non-crystallographic, with system of

imprimitivity �1. Let us denote N2 ¼ N1=�1 and inductively

Nkþ1 ¼ Nk=�k. The order of the labelled quotient graph

Nkþ1=T, which is the quotient of Nk=T by the equivoltage

partition, is strictly smaller than that of the latter if the

partition is not the trivial one. Since lattice nets (with quoti-

ents of order 1) are crystallographic nets, the procedure must

end with a crystallographic net after a finite number of steps.

We shall say that an NC net is of type k if the quotient Nk is a

crystallographic net. Examples of NC nets of types 2 and 3 are

given in xx9 and 10, respectively.

8.4. Structure of the bounded automorphism group

From the previous analysis, it appears that the quotient

group BðNÞ=FðNÞ is generally a subgroup of the group of

bounded automorphisms of the quotient network N=�. Let

b 2 BðNÞ and consider the class of automorphisms

bFðNÞ 2 BðNÞ=FðNÞ. Since only automorphisms in the iden-

tity class FðNÞ can have finite order, the quotient BðNÞ=FðNÞ

has no non-trivial automorphism of finite order. According to

the conclusions reached in xx8.1 to 8.3, BðNÞ=FðNÞ is then a

free abelian group S, and hence isomorphic to a translation

subgroup of the periodic net N=�. This yields our last

theorem.

Theorem 8.3. The group of bounded automorphisms BðNÞ

of the NC net ðN;TÞ is isomorphic to the semi-direct product

of the translation group T and the subgroup FðNÞ of bounded

automorphisms of finite order: BðNÞ ’ T 	 FðNÞ.

Proof. Clearly t1FðNÞ 6¼ t2FðNÞ if t1; t2 2 T are distinct,

hence T � S. Suppose there is some b 2 BðNÞ which is

mapped to a translation s 62 T of N=�. Because S and T have

the same rank, T has finite index in S and there is some power

sn 2 T, as a translation of N=�. This shows that one may use b

to obtain an extension of T as a translation group of N. If we

suppose that T is a maximal translation group of ðN;TÞ we

have a contradiction, hence S ¼ T. &

This last result also provides a simple interpretation to

bounded automorphisms b 2 BðNÞ. Because they can be

written as a product b ¼ ft of a translation t 2 T followed by

an automorphism of finite order f 2 FðNÞ, one can say that

any bounded automorphism approximates some translation.

Blocks of imprimitivity being finite, there is an upper bound,

say jFj, to the norm of any automorphism in FðNÞ, hence

dðbðVÞ; tðVÞÞ � jFj for any vertex V in the net. Moreover, the

bounded automorphism ft has the same effect as the transla-

tion t on the barycentric representation of the net.

9. A simple NC net based on nbo

Fig. 16(a) shows a pseudo-barycentric representation of an NC

net derived from nbo. Its labelled quotient graph, Fig. 16(b),

displays an equivoltage partition with only one non-trivial cell:

the two respective vertices have been enclosed within a small

orange circle. The corresponding vertices in each block of the

net can exchange quite independently from the remaining

blocks. This gives FðNÞ ’ ðS2Þ
Z

3

so that the bounded auto-

morphism group is isomorphic to the wreath product Z3 Wr

S2. Taking the quotient of the labelled quotient graph in Fig.

16(b) by the equivoltage partition yields the labelled quotient

graph in Fig. 16(c). This graph also shows an equivoltage

partition with three cells formed by blue, green and red pairs

of vertices, respectively. The quotient by this partition is the

labelled quotient graph of the nbo net shown in Fig. 16(d). Of

course, being a stable net, nbo is a crystallographic net, hence

the NC net is of type 2. It may also be seen on the figure that

the NC net and nbo have the same barycentric representation.
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After the two circled vertices have been identified in the

quotient N=�, a single new bounded automorphism turns into

being. The respective labelled quotient graph, Fig. 16(c), has in

fact an automorphism of order 2 which preserves the voltages

over all cycles; the corresponding automorphism of the net

commutes with the translation group so that FðN=�Þ ’ S2 and

BðN=�Þ ’ S2 	 Z
3. It should be noted that the labelled

quotient graph N=T, Fig. 16(b), also displays an auto-

morphism which preserves the voltages over its cycles, indi-

cating the existence of a bounded automorphism of the net

that respects its periodic structure. This automorphism (also of

order 2) exchanges simultaneously every pair of colliding

vertices. Thus, automorphisms of the labelled quotient graph

do not give enough information to characterize the group

BðNÞ. Analysis of the correlation groups shows that permu-

tations inside cells of the equivoltage partition have no

correlation in the case of the net N but are completely

correlated in the case of its quotient N=�.

10. A simple NC net based on pcu

As a further example, Fig. 17(a) shows a representation of an

NC net derived from pcu. Its labelled quotient graph, Fig.

17(b), displays an equivoltage partition with only one non-

trivial cell containing the two vertices A and B. The corre-

sponding vertices in each block of the net cannot exchange

independently from the remaining blocks in directions 010 and

001. Exchanging two vertices in one block demands exchan-

ging the two vertices in every block in the same plane ortho-

gonal to direction 100. This gives FðNÞ ’ ðS2Þ
Z so that the

bounded automorphism group is isomorphic to the product

(Z Wr S2) 	Z2. Taking the quotient of the labelled quotient

graph in Fig. 17(b) by the equivoltage partition yields the

labelled quotient graph in Fig. 17(c). This graph also shows an

equivoltage partition with two cells, the quotient of which,

shown in Fig. 17(d), admits the bouquet B3, i.e. the labelled

quotient graph of pcu as final quotient. Of course pcu is a

crystallographic net, hence the NC net is of type 3. It may also

be seen that the NC net and pcu have the same barycentric

representation with the four vertices colliding in the unit cell.

We emphasize that, although vertices A and C are not

equivalent under the automorphism group of the net, indeed

they even have different degrees, they collide in the bary-

centric representation of the net.

Clearly the reverse procedure may be used to generate NC

nets, that is: starting from the labelled quotient graph of a

crystallographic net, one may replicate several times every

vertex together with the incident edges, including their

labelled vectors, to get a quotient graph with an equivoltage

partition.

11. Final considerations

We have shown that NC nets are unstable nets, i.e. their

barycentric representations display vertex collisions. This

means that, conversely, stable periodic nets are crystal-

lographic nets.
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Figure 16
(a) A representation of an NC net derived from nbo and the sequence of
labelled quotient graphs showing equivoltage partitions starting from (b)
the labelled quotient graph of the net to (d) the labelled quotient graph of
nbo (see text).

Figure 17
(a) A representation of an NC net derived from pcu and the sequence of
labelled quotient graphs showing equivoltage partitions starting from (b)
the labelled quotient graph of the net to (e) the labelled quotient graph of
pcu (see text).



A further question comes from the existence of unstable

crystallographic nets. NC nets have a system of finite blocks of

imprimitivity for the group of bounded automorphisms and, as

a consequence, their labelled quotient graph admits an equi-

voltage partition. It was shown in Moriera de Oliveira Jr &

Eon (2013) that the labelled quotient graph of some crystal-

lographic nets also admits an equitable partition, which

enforces vertex collisions for the barycentric representation of

the net. However, trivial correlation groups between different

cells forbid the existence of bounded automorphisms of finite

order. Hence, even if some unstable net admits an equivoltage

partition, the analysis of this partition is necessary before

classifying it as NC.

We end with a note of caution concerning the converse

question: some labelled quotient graphs do not admit equi-

voltage partitions but nonetheless correspond to unstable

crystallographic nets (Delgado-Friedrichs et al., 2013). The

case of quotient graphs with a bridge is well known [see, for

example, in Eon (1999) the 2-periodic minimal net derived

from the dumbbell graph] but general conditions for

instability have not yet been recognized.

APPENDIX A
Convergence of permutations in Z

Let us say that a permutation p of the set of integers Z is

bounded if there is an integer jpj such that jpðiÞ � ij< jpj for

any i 2 Z. Define the translation t : i 7! iþ 1 of infinite order

and two permutations of finite order, f ¼
Q

ið2i; 2iþ 1Þ and

g ¼
Q

iði;�iÞ for i 2 Z; t and f are bounded, g is not. The first

product, ft : 2i� 1 7! 2iþ 1, contains a single infinite cycle

translating all odd numbers and fixes every even number. It

is bounded but of infinite order. The second product

gt ¼
Q

ið�i; i� 1Þ contains infinitely many 2-cycles: it is of

finite order but it is not bounded.

In the first case, we may define pm ¼
Q
jij�mð2i; 2iþ 1Þt,

which fixes even numbers in the interval �2m � i � 2m, maps

i to iþ 1 for jij> 2m and 2i� 1 to 2iþ 1 for jij< 2m. Clearly

pm converges to ft, every pm contains a single infinite cycle, as

well as the limit.

In the second case, we define pm ¼
Q

i�mði;�iÞt, which

contains m 2-cycles ð�i; i� 1Þ for i<m and contains one

infinite cycle that maps i to iþ 1 for i<�m� 1 and i � m, but

maps�m� 1 to m. In other words, the infinite cycle is equal to

t in the two semi-infinite parts i<�m� 1 and i � m but pulls

directly from �m� 1 to m. Although every pm contains a

single infinite cycle, its limit gt has none.

JGE thanks CNPq, Conselho Nacional de Desenvolvimento
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